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rvin Sejdić a,c,∗, Catriona M. Steeleb, Tom Chaua

Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and the Institute of Biomaterials and Biomedical
ngineering, University of Toronto, Toronto, Ontario, Canada
Toronto Rehabilitation Institute and the Department of Speech-Language Pathology, University of Toronto, Toronto, Ontario, Canada
Division of Gerontology, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard University, Boston, MA,  USA

 r  t  i  c  l  e  i  n  f  o

rticle history:

eceived 27 October 2009

eceived in revised form

 April 2010

ccepted 23 June 2010

eywords:

ual-axis swallowing accelerometry

ignals

caling analysis

etrended fluctuation analysis

a  b  s  t  r  a  c  t

Dual-axis cervical accelerometry is an emerging approach for the assessment of swallowing

difficulties. However, the baseline signals, i.e., vibration signals with only quiet breathing or

apnea but without swallowing, are not well understood. In particular, to comprehend the

contaminant effects of head motion on cervical accelerometry, we need to study the scaling

behavior of these baseline signals. Dual-axis accelerometry data were collected from 50

healthy adult participants under conditions of quiet breathing, apnea and selected head

motions, all in the absence of swallowing. The denoised cervical vibrations were subjected

to  detrended fluctuation analysis with empirically determined first-order detrending. Strong

persistence was identified in cervical vibration signals in both anterior–posterior (A–P) and

superior–inferior (S–I) directions, under all the above experimental conditions. Vibrations

in  the A–P axes exhibited stronger correlations than those in the S–I axes, possibly as a

result  of axis-specific effects of vasomotion. In both axes, stronger correlations were found
in  the presence of head motion than without, suggesting that head movement significantly

impacts baseline cervical accelerometry. No gender or age effects were found on statistical

persistence of either vibration axes. Future developments of cervical accelerometry-based

medical devices should actively mitigate the effects of head movement.

tude of swallowing accelerometry signals. These include small
. Introduction

he videofluoroscopic swallowing study (VFSS) is the cur-
ent gold standard for the detection and management of
ysphagia (swallowing difficulties) [1].  Nevertheless, VFSS is
ot suitable for ongoing monitoring due to excessive expo-
ure to radiation, long waiting lists at hospitals and lack of
vailability in many  communities [2,3]. In recent years, swal-

owing accelerometry has emerged as an alternative approach
or non-invasive assessment of swallowing disorders [4,5].
wallowing accelerometry is a technique involving the attach-
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ment of an accelerometer at the patient’s neck. Traditionally,
single-axis accelerometers were used [6–9]. However, it has
been shown recently that dual-axis accelerometers yield more
information and enhance diagnostic capabilities [10,11],  likely
as a result of the two-dimensional movement  of the hyoid and
the larynx during swallowing [12,13].

In previous contributions it has been noted that various
phenomena, not related to swallowing, can alter the ampli-
torehab.on.ca (C.M. Steele), tom.chau@utoronto.ca (T. Chau).

low-frequency vibrations observed in the baseline state (e.g.,
[14]) or head motion effects during swallowing (e.g., [10,11]).
However, to the best of our knowledge, there are no contribu-

erved.
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tions considering the effects of these phenomena on dual-axis
swallowing accelerometry signals. In particular, given that the
aforementioned contaminant signals lie in the low-frequency
range and usually exist for the duration of a swallow, it is
worthwhile to examine the scaling behaviour of swallowing
accelerometry signals. Understanding such behaviour may
help uncover age, gender or head motions effects on dual-axis
swallowing accelerometry signals.

The main contributions of this paper are the exposure of
strong statistical persistence in baseline dual-axis cervical
vibration signals and the effects of demographic variables on
such dependencies. Throughout this paper, “baseline” refers
to dual-axis accelerometry signals collected at the neck during
quiet breathing and apnea, in the absence of swallowing.

This paper is organized as follows: in the next section, we
review the principles of scaling analysis and detrended fluc-
tuation analysis. In Section 3, we describe the data collection
and analysis methods. The results of the analysis are covered
in Section 4 along with a discussion. Finally, conclusions are
drawn in Section 5.

2. Mathematical  background

Signals acquired by a dual-axis accelerometer are analyzed in
this paper. Nevertheless, to avoid repetition, the discussion
below is based on a signal acquired from a single-axis only.
It should be noted, however, that the exact same analysis is
conducted for both axes. Furthermore, we will assume that the
acquired signals, x(n), represent observations made during the
time interval 0 ≤ n ≤ N − 1, where N represents the length of the
signal. From the time series point of view, we can consider x(n)
to be a discrete-time series since the observations are made
at fixed time intervals from the discrete set of times, � (with
N representing the cardinality of �) [15]. The time series can
then be taken as a realization of the family of real-valued ran-
dom variables {�n, n ∈ �} that are considered to be a stochastic
process defined on a probability space [15].

2.1. Scaling  analysis

Baseline dual-axis swallowing accelerometry signals can be
wide-sense stationary processes [14]. If such a process is
denoted by {�n : n = 0, 1, . . . } with mean, ��, and variance, �2

� ,
then its covariance function cov(�n, �n+k) is independent of n
for all integers k [16]. Furthermore, its autocorrelation function
is then defined as

�k = cov(�n, �n+k)
�2

�

(1)

Often, the analysis of a time series stemming from such pro-
cesses assumes that observations made over a large time span
are independent. This assumption is often violated in prac-
tice (e.g., [17,18]), and these lengthy time series can exhibit
long-range dependence. Hence, it is desirable to understand
whether acquired time series exhibit any short or long-range
dependence (e.g., [19,20]). Consider the sum, � s:
�s =
s∑

k=1

�k (2)
 b i o m e d i c i n e 1 0 3 ( 2 0 1 1 ) 113–120

where its variance is given by

var(�s) = s�2
� +

s∑
i=1

∑
j /=  i

cov(�i, �j) (3)

with s ∈N.
The asymptotic behaviour of (3) can be used to differ-

entiate two kinds of processes [17]. One group of processes
is characterized by an autocorrelation function that decays
exponentially fast [17,18].  Processes in this group include
short-range dependent processes with Markov chains and
auto-regressive moving average processes of finite order. The
second group of processes is characterized by an autocorre-
lation function that exhibits a behaviour different from an
exponentially decay, i.e., the correlation at very large lags can
still be non-zero. In other words, a time series with long-range
dependence exhibits a slowly decaying correlation that typi-
cally obeys a power-law function:

�k ∼|k|−� (4)

where k denotes correlation lags and 0 < � < 1, is the rate of
decay. The long-range dependence of a time series implies
that although correlations at large lags can be very small, their
cumulative effect is not negligible.

Many empirical time series observe long-range depen-
dence or persistence, manifesting as consecutive bursts of
small or large values [21]. In the frequency domain, a process
exhibiting long-range dependence has a spectral density of
the form [22]:

sx(ω)∼|ω|−
 as ω → 0 (5)

where 
 > 0. On the other hand, a spectral density of a short-
range dependent process remains finite as ω → 0.

So-called Hurst exponents (denoted by H) are often used
to characterize the long-range dependence present in time
series (please refer to [22,23] for an in-depth coverage of the
topic and examples of various applications). The Hurst expo-
nent can be related to the spectral density of long-range
dependent processes given by (5),  namely, 
 = 2H − 1 as long
as 0.5 < H < 1 [22]. There are several methods for estimating
the Hurst exponent such as rescaled range analysis, peri-
odogram method, variance method, Whittle estimator, and
wavelet based methods [22,23].  However, there has been little
consistency in Hurst exponent estimates across the different
methods [24]. The discrepancy in the results indicate poten-
tial difficulties in applying Hurst estimators to experimental
data obtained from physical processes. An additional problem
arises if the given process contains multiple scaling exponents
across different scaling regions. In this case, linear regres-
sion cannot be used to estimate the exponent over all scales.
Doing so may yield a Hurst exponent estimate that grossly
misrepresents the scaling behaviour. Furthermore, long-range
dependence is associated with stationary processes [22], and

hence some estimators implicitly assume stationarity. From
previous studies, it is known that baseline dual-axis swal-
lowing accelerometry signals can be stationary. Nevertheless,
once these signals include swallows, they become nonsta-

dx.doi.org/10.1016/j.cmpb.2010.06.010


Journal Identification = COMM Article Identification = 3084 Date: July 7, 2011 Time: 8:22 pm

i n b i

t
e
n

2

D
m
i
r
p
d
a
o

t
s
x
s
n
S
n
b
s
c
t
i
t
a
w
o

�

w
s

t
s
i
u
t
f
p
D
p
�

f
F
H
[
c
a
[
t
[
t
B
o
v

c o m p u t e r m e t h o d s a n d p r o g r a m s 

ionary [11]. Hence, these traditional approaches for scaling
stimation are not applicable, and an alternative approach is
eeded.

.2.  Detrended  fluctuation  analysis

etrended fluctuation analysis (DFA) is a scaling analysis
ethod developed to address the aforementioned shortcom-

ngs of other scaling methods. DFA uses a scaling exponent  ̨ to
epresent the (auto-)correlation properties of a time series and
ermits detection of statistical persistence behaviour embed-
ed in nonstationary time series [25,26].  Furthermore, DFA
voids detection of long-range correlations that are an artifact
f nonstationarity [27,28].

The algorithm for DFA has been outlined in previous con-
ributions (e.g., [25–28]).  Here, we only summarize the main
teps. Given the noisy discrete-time observations of a signal,
(n), of length N, the first step is to evaluate the cumulative
um of the signal. Then, the integrated series is divided into L
on-overlapping segments of equal length, M. As outlined in
ection 3.2,  one should carefully choose values of M.  As the
ext step, a local trend for each of the segments is calculated
y a least-square fit of the data. Various polynomial orders
uch as linear, quadratic, cubic, or higher order polynomials
an be used in the fitting procedure. Then, the variance around
he local trend is determined. An increasing value of M will
nherently produce an increasing value of �(M) due to the fact
hat longer segments can introduce greater deviations from

 local trend. Therefore, DFA models fluctuations which scale
ith segment length, M,  in a power-law fashion, independent
f external trends and signal amplitude, i.e.,

(M) ∝ M˛ (6)

here  ̨ is the slope of the line observed in the log–log repre-
entation of �(M) versus M.

Given that the scaling exponent is typically estimated as
he slope of a single line on a log–log plot of fluctuations ver-
us scale, the presence of multiple scaling effects can yield
naccurate results. This crossover phenomenon (e.g., [27,29])
sually arises due to changes in the correlation properties of
he signal at different temporal or spatial scales [30]. There-
ore, extracting the global exponent can be misleading in the
resence of crossover phenomena, and modifications to the
FA should be used (e.g., [31]).  ̨ can be related to correlation
roperties of a time series and in some cases to (4),  such that

 = 2 − 2  ̨ [25,32,33].  Furthermore,  ̨ can be related to 
 value
rom the power spectral density defined in (5) as 
 = 2  ̨ − 1.
rom this relationship, it is clear that  ̨ is also related to the
urst exponent. In fact,  ̨ = H for 0 ≤ H ≤ 1 and  ̨ = H + 1 for H > 1

34–36]. From a physical point of view, the value of  ̨ has a spe-
ific meaning. In particular, there is no correlation present in

 time series when  ̨ = 0.5, i.e., the time series is white noise
25]. For  ̨ > 0.5 it can be stated that the time series are posi-
ively correlated and for  ̨ < 0.5 the time series is anticorrelated
27,37]. In addition, two special cases have been pointed out in

he literature:  ̨ = 1 indicates 1 / f noise, while  ̨ = 1.5 indicates
rownian noise [38]. A very popular description of the meaning
f  ̨ is that it denotes the “roughness” of a time series. Higher
alues of  ̨ denote smoother time series (for example,  ̨ = 0.5
 o m e d i c i n e 1 0 3 ( 2 0 1 1 ) 113–120 115

for the white Gaussian noise which is considered very rough,
while  ̨ = 1.5 for the Brownian motion, which is considered very
smooth) [38].

3.  Methodology

Potential participants completed a short survey outlining
his/her medical history. Participants were excluded if they
had any known or prior symptoms of swallowing diffi-
culties, or had a history of stroke or other neurological
conditions, head or neck cancer, neck or spinal injury or a tra-
cheostomy. Fifty consenting healthy adults (18–65 years of age,
26 females) participated in this study. Participants were pur-
posefully recruited such that 4 different age ranges, i.e., 18–34,
35–44, 45–54, and 55–65 were proportionally represented. The
research ethics board of Holland Bloorview Kids Rehabilita-
tion Hospital (Toronto, Ontario, Canada) approved the study
protocol and all participants provided signed consent.

Participants were seated comfortably in a chair. A dual-
axis accelerometer (ADXL322, Analog Devices) was placed on
the neck of each participant anterior to the cricoid cartilage
and secured with double-sided tape. The two  axes were posi-
tioned in the anterior–posterior (A–P) and superior–inferior
(S–I) directions. Three additional sensors complemented the
dual-axis accelerometry measurements and confirmed that
the participants were indeed following the data collection
protocol properly. In particular, we collected signals from a
triple-axis accelerometer (MMA7260Q, SparkFun Electronics)
attached to a headband and centred on the participant’s fore-
head to monitor head motions; a respiratory belt (1370G, Grass
Technologies) secured around the participant’s diaphragm to
monitor breathing patterns; and a microphone placed around
30 cm from the participant’s mouth to capture vocalizations.
The signals acquired from the dual-axis accelerometer were
processed in hardware using a band-pass filter and an ampli-
fier (P55, Grass Technologies). The pass band of the filter was
set to 0.1–3000 Hz. The sampling frequency of 10 kHz was used
to collect the amplified sensor data using a LabVIEW program
running on a computer. The data were stored on the hard drive
for subsequent analyses. Data collection from all the sensors
was synchronized in time. The experimental setup is shown
in Fig. 1.

The data collection procedure included seven primary
tasks that were completed by each participant:

1. Remain silent and motionless for 60 s.
2. Remain silent, motionless and stop respiration for 10 s.
3. Remain silent and tilt head to the left 10 times.
4. Remain silent and tilt head to the right 10 times.
5. Remain silent and tilt head downward (infero-anterior to

natural position) 10 times.
6. Remain silent and tilt head backward (infero-posterior to

natural position) 10 times.
7. Remain silent and rotate head from right to left 5 times,

and from left to right 5 times.
All participants were advised to refrain from swallowing
during each task, but were permitted to swallow accumulated
saliva between successive steps.

dx.doi.org/10.1016/j.cmpb.2010.06.010
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Fig. 1 – Instrumentation used for data collection in this

study.

3.1.  Data  analysis

Using non-parametric significance tests (e.g., the
Mann–Whitney test [39]), we checked for differences in
statistical persistence between the A–P and S–I directions for
the baseline dual-axis accelerometry signals. Furthermore,
we investigated possible demographic effects on those corre-
lations. In this paper, a 5% statistical significance level was
used.

Prior to statistical analysis, the acquired signals were pre-
processed with the inverse filters developed in [14]. The
filtered signals were then denoised using a 10-level discrete
wavelet transform using the discrete Meyer wavelet with soft
thresholding [40,41].  DFA was carried out using the minimal
and maximal values of the analyzing window and the order
of the fitting polynomial, recommended in the following sub-
section.

3.2.  Initialization  of  DFA  for  dual-axis  swallowing
accelerometry  signals

There are three parameters in DFA: the smallest window size
over which fluctuations are estimated, what we  term the lower
cutoff value, Mmin; the largest window size over which fluctu-
ations are estimated, what we term the upper cutoff value,
Mmax; and the order of the fitting polynomial. First, we con-
sider how the analysis boundaries, Mmin and Mmax, are chosen.
It has been suggested that very large Mmax are preferred in

order to deal with possibly very long correlations [26]. Never-
theless, as Mmax approaches N the error in the estimation of ˛

increases significantly. The ratio Mmax / N represents the num-
ber of statistically independent measurements by which the
 b i o m e d i c i n e 1 0 3 ( 2 0 1 1 ) 113–120

value �(M) is obtained and the error associated with the esti-
mation of  ̨ is inversely proportional to the square root of this
ratio [26]. In particular, the standard deviation of  ̨ is given by
[26,42]:

�˛ ∼= 0.1

√
Mmax

N
(7)

Hence, the goal in the analysis of any type of signals is
to have �˛ significantly smaller than the differences due to
the phenomena of interest. It has been empirically observed
that Mmax = N / 10 provides satisfactory results [26,27],  which
provides �˛ ≈ 0.03. Unfortunately, analogous guidelines for
choosing the lower cutoff value are not available. It has been
suggested that Mmin should be chosen such that Markovian
correlations do not affect the estimation of  ̨ [26]. Hence, dif-
ferent values for the lower cutoff value have been used in
different applications. In some cases, the lower cutoff value
is only a few data points (e.g., [37]). Nonetheless, for the scal-
ing analysis of swallowing signals, we implemented a lower
cutoff value of Mmin = N / 100. This value enables us to analyze
signals over a decade of window sizes. Due to the fact that
the error in the estimation of  ̨ increases proportionally with
window size, a signal dependent rather than fixed upper cut
off value was implemented (i.e., Mmax = N / 10). Hence, the win-
dow lengths used in the analysis were given by the following
set of values:

M =
{

M : M ∈ N  and
⌊

N

100

⌋
≤ M ≤

⌊
N

10

⌋}
(8)

where the set contains fifty points equally spaced on a loga-
rithmic scale. Hence, the set M provided us with a sufficient
number of points to carry out an accurate fitting of a local
trend.

The order of the fitting polynomial depends on the charac-
teristics of the signals under analysis. A first-order polynomial
was used for dual-axis cervical signals considered in this
paper. To understand this particular choice, let’s consider
cumulative sum of a sample signal shown in Fig. 2(a), repre-
senting baseline vibrations in the A–P direction. The signal is
divided into segments of the longest window size (i.e., a win-
dow with its length equal to N / 10). Polynomial fitting using
first, second and third orders are shown in Fig. 2(b)–(d), respec-
tively. These figures depict that the local trend (thick solid line)
is most accurately modeled by a first-order polynomial. Higher
order polynomials tend to overfit the local trend. Therefore, for
the rest of the analysis, a first-order polynomial was used to
model local trends.

4. Results  and  discussions

Table 1 summarizes  ̨ values for signals in both A–P and S–I
directions. A number of observations are in order. The statisti-
cal persistence observed in the A–P and the S–I directions are
statistically different in all cases (p 	 0.01), except for Test 3

(p = 0.61).  ̨ values in the A–P direction are higher than those
in the S–I directions denoting stronger correlations. These
results resonate with the findings of [14], which reports that
the peak frequencies of the small vibrations associated with

dx.doi.org/10.1016/j.cmpb.2010.06.010
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Fig. 2 – Choice of polynomial order for detrending in DFA. Cumulative sum of a sample cervical accelerometry signal is
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epicted in (a). Subsequent graphs show polynomial fits (so

asomotion near the thryroid cartilage are lower in the A–P
irection than those in the S–I direction.

Hence, the vibrations in the A–P direction are dominated
y low-frequency components indicative of strong statistical
ersistence. Observations should be also made regarding the
ffect of head position. In the A–P direction, the  ̨ values were
tatistically equal when considering all head tilting (Tests 3–6,

 = 0.46, Kruskal–Wallis test). For both directions, higher  ̨ val-
es are observed in tasks involving head movements (Tests
–7) than in tasks without head motion (Tests 1 and 2). In the
–I direction, head movements induced statistically equiva-

ent persistence for Tests 5 and 6 (Mann–Whitney test, p = 0.77).
he results from both directions suggest that similar head
ositions (or movements) induced vibrations with similar sta-
istical characteristics in the dual-axis cervical accelerometry
ignals. These results confirm findings from previous publi-

ations (e.g., [10,11]),  which noted that head movements can
ignificantly alter the amplitudes of dual-axis accelerometry
ignals.

Table 1 – Direction-based differences in ˛ values.

Test Overall

A–P S–I

1. Motionless and quiet breathing 1.30 ± 0.18 1.11 ± 0.31
2. Motionless and apnea 1.08 ± 0.27 0.63 ± 0.24
3. Tilt head left 1.40 ± 0.20 1.39 ± 0.25
4. Tilt head right 1.42 ± 0.17 1.27 ± 0.23
5. Tilt head down 1.46 ± 0.19 1.14 ± 0.31
6. Tilt head back 1.42 ± 0.19 1.16 ± 0.23
7. Head rotation 1.52 ± 0.15 1.42 ± 0.22
ne): (b) first-order; (c) quadratic; (d) third-order.

It has been previously observed that there are no gender-
based differences in the frequency content of cervical
accelerometry signals [14]. As shown in Table 2, our analysis
resonates with this previous finding. There are no gender-
based differences in  ̨ values in either the A–P (p > 0.34) or
S–I (p > 0.23) directions. However, within each gender, statis-
tical differences generally exist between  ̨ values in the A–P
and S–I directions (p < 0.02). The only exception occurs when
considering Test 3 (p > 0.44) for both genders, where the  ̨ val-
ues are statistically equal between the A–P and S–I directions.
Also, Test 7 (p = 0.24) for male participants and Test 4 (p = 0.08)
for female participants have statistically equal  ̨ values for the
A–P and S–I directions, likely due to the high variability of the

 ̨ values for these two tests.
Tables 3 and 4 group  ̨ values according to age for the A–P

and S–I directions, respectively. The  ̨ values in the S–I direc-
tion are statistically different from the  ̨ values in the A–P
direction for all age groups. Furthermore, a linear regression
revealed no dependence of  ̨ values on age in the A–P direc-
tion for Tests 1–6 (p > 0.08). These results are in accordance
with those presented in [14], which showed that the baseline
characteristics of dual-axis swallowing accelerometry signals
are not statistically associated with the age or gender of par-
ticipants.

Nevertheless, several interesting observations can be made
about the statistical persistence of the cervical signals in the
S–I direction (Tables 3 and 4). First, even though the regres-
sion analysis showed no age dependence, we  observed that

the mean  ̨ values increase with age for some of completed
task.

In essence, higher  ̨ values denote stronger correlations
(longer dependencies). Second, increasing  ̨ values with age

dx.doi.org/10.1016/j.cmpb.2010.06.010
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Table 2 – Gender-based differences in ˛ values.

Test Male Female

A–P S–I A–P S–I

1. Motionless and quiet breathing 1.28 ± 0.19 1.06 ± 0.38 1.32 ± 0.17 1.15 ± 0.25
2. Motionless and apnea 1.04 ± 0.26 0.61 ± 0.25 1.11 ± 0.29 0.66 ± 0.24
3. Tilt head left 1.42 ± 0.21 1.39 ± 0.27 1.38 ± 0.20 1.39 ± 0.23
4. Tilt head right 1.41 ± 0.18 1.25 ± 0.23 1.41 ± 0.17 1.29 ± 0.23
5. Tilt head down 1.45 ± 0.19 1.12 ± 0.38 1.46 ± 0.20 1.17 ± 0.24
6. Tilt head back 1.41  ± 0.19 1.11 ± 0.22 1.43 ± 0.19 1.20 ± 0.23
7. Head rotation 1.53 ± 0.15 1.44 ± 0.22 1.52 ± 0.16 1.39 ± 0.21

Table 3 – ˛ variation in the A–P direction according to age of participants.

Test 18 ≤ Age < 35 35 ≤ Age < 45 45 ≤ Age < 55 55 ≤ Age < 65 p-Values

Test 1 1.26  ± 0.18 1.34 ± 0.16 1.32 ± 0.23 1.33 ± 0.12 0.14
Test 2 1.06  ± 0.28 1.05 ± 0.20 1.21 ± 0.26 0.96 ± 0.32 0.86
Test 3 1.34 ± 0.14 1.48 ± 0.21 1.36 ± 0.26 1.49 ± 0.18 0.28
Test 4 1.38 ± 0.14 1.48 ± 0.17 1.41 ± 0.17 1.43 ± 0.23 0.40
Test 5 1.42 ± 0.18 1.52 ± 0.20 1.52 ± 0.14 1.39 ± 0.25 0.55
Test 6 1.43 ± 0.21 1.43 ± 0.22 1.40 ± 0.18 1.43 ± 0.17 0.58
Test 7 1.49 ± 0.17 1.63 ± 0.10 1.52 ± 0.15 1.50 ± 0.13 0.43

Table 4 –  ̨ variation in the S–I direction according to age of participants.

Test 18 ≤ Age < 35 35 ≤ Age < 45 45 ≤ Age < 55 55 ≤ Age < 65 p-Values

Test 1 1.09  ± 0.31 1.15 ± 0.33 1.13 ± 0.34 1.04 ± 0.34 0.74
Test 2 0.60  ± 0.25 0.59 ± 0.27 0.68 ± 0.19 0.67 ± 0.29 0.33
Test 3 1.36 ± 0.27 1.49 ± 0.09 1.35 ± 0.32 1.43 ± 0.19 0.91
Test 4 1.32 ± 0.19 1.29 ± 0.14 1.21 ± 0.27 1.26 ± 0.32 0.27
Test 5 1.16 ± 0.23 1.11 ± 0.23 1.18 ± 0.30 1.08 ± 0.53 0.63
Test 6 1.18 ± 0.24 1.22 ± 0.16 1.07 ± 0.15 1.17 ± 0.40 0.73
Test 7 1.41 ± 0.21 1.49 ± 0.18 1.34 ± 0.24 1.44 ± 0.25 0.87

Fig. 3 – Cervical signals in the S–I direction during Test 1 from participants in two different age groups. A recording from a
19-year-old participant (a) and zoomed-in partition (b). A recording from a 65-year-old participant (c) and zoomed-in
partition (d).
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ere observed regardless of whether or not the participants
oved their heads (Tables 3 and 4, Tests 1–2 vs. Tests 3–7).

his indicates that higher  ̨ values are not simply due to an
ge-related decrease in motor skills, but likely attributable in
art to some other physiological/anatomical phenomena. A
ossible explanation for these observations stem from the
ge-related changes of human cardiovascular system. It is
ell known that human cardiac dynamics slow down with

he age (e.g., [43,44]). Given that heart beats can be observed
n these baseline recordings as shown in Fig. 3, we specu-
ate that the age-related increases in  ̨ values are precisely
ue to slower cardiovascular dynamics. In other words, slower
ariations induce longer range dependencies. Differences in
ardiac dynamics for participants from different age groups
ere also easily observed in Fig. 3(b) and (c). Younger partic-

pants have two strong components within each heart beat,
hile in older participants, the second component usually has
ecreased amplitude. Our speculations seem to align with the
bservations of [45], which analyzed cardiac interbeat interval
ynamics using DFA. The authors also found higher  ̨ values

n older participants, when considering cardiac time series up
o approximately 30 heart beats, which was approximately the
ength of the time series considered in this paper.

. Conclusion

n this paper, scaling analysis was conducted on baseline
ual-axis cervical accelerometry signals in the absence of
wallowing. We found that low frequency, small vibrations
resent in dual-axis cervical accelerometry signals introduced
trong statistical persistence in these signals. Various head
ovements also had a strong influence on the long-range

ependence of cervical accelerometry. Generally, the A–P axis
xperienced greater long-range dependence than the S–I axis.
o gender-based differences were found in the observed

ong-range dependencies. Further developments of cervical
ccelerometry-based medical devices should account for head
otion.
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